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inner Cu in an adjacent Stella quadrangula and has the same bond 
length as that within the metal tetrahedron. The calculated overlap 
populations are shown in 30. The difference between the top and 
side bond strengths in the metal tetrahedron is increased. It is 
because more bonding states for the top edge are pushed up by 
interactions such as 31. The bonding <s orbital in 26 has its 

/\——°026 A 
/ \— °030 / \ 

— 0.04J 

30 31 

electron density localized at the center of the bond, thus it interacts 
better with the Cu1 atom than other antibonding orbitals such as 
n. 

We have performed calculations on the Stella quadrangula chain 
in which all inner sites or all outer sites are filled. When only 
all inner sites are filled, there are not enough M-X bonds to hold 
the structure from collapsing. If all outer sites are filled, there 
is the crowding effect between the metal atoms between adjacent 
stella quadrangula which gives unreasonably large negative overlap 
population values. The structure seems to be best filled alter
natively, unless it expands to relieve the crowding effect. Figure 
8 shows the COOP curves for the expanded structure, in which 
the shortest Cu-Cu and Cu-Te contacts are around 2.6 and 2.7 
A, respectively. Here again, the mixing of the Cu s,p band into 
the d band has reduced the antibonding feature at the top of the 
d band. Thus high occupancy of the d band is possible, even for 
an expanded structure with all outer or all inner and outer sites 
filled. 

In this paper we have fleshed out the beautiful, seductive ge
ometry of a spiral chain of face-sharing tetrahedra, by adducing 
several molecular realizations. The optimal electron counts for 

The usual question asked when studying molecular symmetry 
problems is the following: what is the point symmetry group of 
some specified nuclear configuration? If the point symmetry is 
determined, then various conclusions can be drawn concerning 
the properties of the specified molecular species.1"* 
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these hypothetical one-dimensional arrays are computed. 
Still another, even more speculative potentiality for realizing 

the tetrahedral chain is to have each tetrahedron centered by a 
water molecule, with hydrogen bonds piercing the shared tetra
hedral faces. Such a helical (H2O)n chain would contain alter
nating nonequivalent water molecules, the chain formed by their 
O-H bonds and lone pairs. Stacking of such structures could lead 
to geometries related to the clathrates and gas hydrates.25 
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Appendix 

The extended-Huckel method26 was used in the calculations. 
The Bloch sum in the helical structure is Y.Reik'RTR<pl, where <£, 
is the atomic wave function in the unit cell, 7"R is the transla
tion-rotation operator, and k is the Bloch wave vector. The 
summation is over all cells. The energies and overlap populations 
are calculated with 100K points along the one-dimensional re
ciprocal space. 

The interatomic distances used are the following: B-H = 1.28 
A, B-B = 1.80 A,27 Pt-Pt = 2.85 A, Pt-C = 2.1 A, C-O = 1.16 
A . " The extended-Huckel parameters are listed in Table I. 
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In this study we shall view the problem from a different per
spective and ask different questions: if all possible configurations 
of a collection of atoms is considered, then which are those con
figurations that have a specified symmetry? What predictions 
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can be made concerning molecular stability and the presence of 
transition structures using symmetry as the only tool? It is 
tempting to assume that all is known that can be learned about 
molecules when using symmetry alone, without additional data. 
However, this is not the case, as it can be demonstrated by taking 
a global approach. Considering all nuclear configurations, many 
of which are highly unstable and have little direct physical sig
nificance, may appear a rather wasteful approach. However, this 
approach offers some unexpected shortcuts: it allows an easy 
recognition of many general features of potential energy surfaces, 
and it leads to a series of new relations of practical significance. 

We shall consider symmetry in the context of potential energy 
surfaces. In dynamic studies the molecular potential energy is 
regarded as a function of a reaction coordinate, where the quantum 
mechanical adiabatic energy of all other coordinates (nonreactive 
modes) orthogonal to the reaction path is considered.7,8 Here 
we shall use the nuclear configuration space approach where the 
potential energy surface is defined by assigning an energy value 
to each formal nuclear configuration. 

The family of all possible arrangements of a given collection 
of atoms is regarded to form a nuclear configuration space, where 
each point of this space represents a nuclear configuration. The 
nuclear geometries of molecular systems of N atoms can be 
characterized by 3JV cartesian coordinates of the nuclei in a 3N-
dimensional nuclear configuration space. Alternatively, the relative 
mutual arrangements of the A' nuclei {N > 3) can be described 
by various choices of 37V-6 internal coordinates, hence the di
mension of a reduced or internal nuclear configuration space for 
the given stoichiometric family of molecular species is 3N-6. 
Configuration spaces of the latter type are advantageous, since 
each relative nuclear arrangement corresponds to precisely one 
point of the space. 

Most minor distortions of nuclear configurations do not change 
the chemical identity of molecular species; consequently, the 
various stable molecules of this stoichiometry as well as the 
transition structures of their interconversion reactions may be 
represented by subsets within the configuration space. With 
reference to the potential energy surface of a specified electronic 
state, for example, to that of the electronic ground state, these 
subsets can be chosen as various catchment regions of the nuclear 
configuration space:*"11 the infinitely slow, vibrationless relaxation 
of each distorted nuclear arrangement within a catchment region 
leads to the same equilibrium nuclear configuration. In an ap
proximate, classical sense, a catchment region may be regarded 
as the range of distorted configurations that preserves chemical 
identity. Note that in the above definition the equilibrium con
figuration is not necessarily an energy minimum; the definition 
applies for any stationary point, in particular, for saddle points 
of transition structures. The mathematical concept of catchment 
regions has been developed by Cayley12 and Maxwell13 who have 
applied it to geographical watersheds, hills, and dales. Other 
approaches to the subdivision of a configuration space, involving 
domains overlapping at their boundaries14 or a differential geo
metrical approach based on the meta-IRC (intrinsic reaction 
coordinate) and on analogies with the cells of an organism15'16 

have been defined only with respect to stable species and not for 
transition structures. However, transition structures can also be 
defined directly, without reference to the stable species they 
mediate. The main advantage of the general catchment region 
definition9"" is that it applies equally to stable species and 
transition structures of the given electronic state, and it provides 
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(15) Tachibana, A.; Fukui, K. Theor. Chim. Acta 1978, 49, 321. 
(16) Tachibana, A.; Fukui, K. Theor. Chim. Acta 1979, 51, 189. 

a single principle for a unique assignment of chemical identity 
labels to each point of a configuration space. One additional 
advantage is of particular relevance to our present study: there 
exists an important relation between catchment regions and 
molecular point symmetry. 

For each electronically excited state (of each overall electronic 
charge), the stable chemical species are generally associated with 
a different partitioning of the nuclear configuration space into 
a different set of catchment regions. However, for any given 
nuclear configuration, the point symmetry of the nuclei is fixed 
and is not affected by the electronic state or net charge. Con
sequently, point symmetry is a link among all electronic states 
of neutral and ionic species of a fixed stoichiometry in a global 
sense, that is, for all possible nuclear configurations. We shall 
study the following questions: which are those nuclear ar
rangements that have a specified symmetry, and can one deduce 
conditions on the energetic stability of these arrangements by using 
symmetry as the only tool! 

Some of the rules we shall derive will apply to individual 
catchment regions of a selected potential surface, some others to 
a whole family of potential surfaces of ground and electronically 
excited states of neutral and ionic species. By considering energy 
as a formal "vertical" dimension over the configuration space, these 
latter results will be summarized in "vertical symmetry theorems". 
Furthermore, by restricting the analysis to a few important internal 
coordinates, new symmetry theorems can be derived for relaxed 
cross sections of potential surfaces of ground and excited electronic 
states. The approach presented here complements well-known 
earlier results on the connections between stability and three-
dimensional (3D) point symmetry of nuclear configurations, such 
as the extensive studies on the Jahn-Teller effect, on the sym
metries of transition states, and on the more general problem of 
vibrations within potential wells.17"25 

The Symmetry Domain Partitioning and Catchment Regions 
of the Nuclear Configuration Space 

In this section we shall discuss two principles for the classifi
cation of nuclear arrangements: one based on symmetry and 
another on energetic stability. 

The results we shall obtain are based on physical properties, 
hence they are independent of the actual coordinate representation 
of the configuration space. However, these results are easier to 
derive in some representations than in others. We shall use paths 
of infinitely slow relaxations and paths of steepest descent; de
pending on the representation, these two types of paths may differ, 
especially, if chemically motivated internal coordinates such as 
bond stretching and bond bending are used. The paths of re
laxation represent physical conditions, hence any coordinate 
transformation converts a relaxation path into a relaxation path. 
A steepest descent path, however, is defined by the partial de
rivatives of the energy surface in the given coordinate repre
sentation, and the steepest descent property is not invariant to 
coordinate transformations. If in the transformation two of the 
coordinates are scaled differently, then on the scaled potential 
surface the ratio of partial derivatives according to the new co
ordinates may differ from the ratio of force components. Con
sequently, steepest descent paths and infinitely slow relaxation 
paths are not necessarily equivalent.26 
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In particular, only in special, e.g., properly mass-weighted 
coordinate systems can one associate the infinitely slow relaxation 
of nuclei with a path of steepest descent on a potential surface. 
Since relaxation paths are special with respect to both catchment 
regions and symmetry conservation, the steepest descent path in 
a mass-weighted system is a tool that simplifies our treatment. 
Furthermore, as the term symmetry indicates, a global analysis 
of symmetry domain distributions is simpler if the configuration 
space has a global metric, that is, a suitable distance function 
defined for all possible pairs of nuclear configurations. 

Both mass-weighting and a global distance function (metric) 
are easily available in a 3/V-dimensional configuration space. 
Unfortunately, in this space identical relative nuclear arrangements 
related to one another by rigid translation or rotation appear as 
different points, and their distance may take any value. On the 
other hand, a global metric is not in general possible for internal 
configuration spaces defined by bond angle and bond length in
ternal coordinates; in fact, all global internal configuration spaces 
for polyatomic systems (N > 3) have counterintuitive properties," 
with consequences that are not universally appreciated. These 
properties hinder or make impossible the global application of 
routine mathematical methods. Even for the simplest, one-di
mensional internal configuration space of a diatomic system, where 
a global metric is available if one takes the bond length as co
ordinate, the space is only a half line, since no negative bond 
distances are possible. In general, internal configuration spaces 
with a global metric do not have vector space properties; for 
example, they have boundaries or singularities at points repre
senting configurations with coincident nuclei." Consequently, 
many of the powerful techniques of differential geometry15'16 are 
applicable only to local domains but not globally to the entire 
internal configuration space. 

In spite of this, it is possible to construct a (3iV-6)-dimensional 
internal configuration space M (a metric space) with both a 
faithful representation of relaxations by steepest descent paths 
and a global distance function.10'"'27 For our present purposes 
it is sufficient to know that such distance function d exists, and 
an actual construction" is not required. Proper relaxation paths 
and global distance function are used only to prove our theorems 
for the general case of a multidimensional internal configuration 
space M, and in actual applications, such as the examples of this 
study, one may use the more familiar bond length and bond angle 
internal coordinates to represent M. 

An example for the representation of the nuclear configuration 
space M of a triatomic stoichimetric family ABC is shown in 
Figure 1. This is a model that has been used extensively for 
illustrating some fundamental properties of nuclear configuration 
spaces." The dimension is 3 X 3 - 6 = 3, and all possible nuclear 
configurations can be generated by varying just three of the nine 
Cartesian coordinates of the nuclei. One may take Xc, X6, and 

(26) Considering a general coordinate transformation, the potential energy 
values assigned to corresponding points of the two surfaces agree, hence both 
the original and the transformed surfaces represent the same physical po
tential. This justifies considering all these representations as generalized 
potential surfaces, for example, those expressed in terms of bond bending and 
bond stretching internal coordinates. However, the energy function expressed 
in terms of the new coordinates is not necessarily a true potential surface <n 
the strict sense, since different partial derivatives may transform differently, 
and the negative gradient vector at a given point of the surface (with com
ponents the partial energy derivatives in the new coordinate representation) 
may differ from the force at the same point. Consequently, a path that follows 
the steepest descent on a surface defined in an arbitrary coordinate system 
may deviate from the classical relaxation path. For example, in a spherical 
potential, all steepest descent paths are straight lines through the center. Scale 
one of the coordinates by a factor of two: this linear transformation generates 
an ellipsoidal representation of the same physical potential and converts all 
the original steepest descent paths into straight lines. Yet all lines that are 
neither orthogonal to nor parallel with the scaled coordinate will lose their 
steepest descent property in the new, ellipsoidal representation, where most 
paths of steepest descent will be curved lines, converging to the center along 
the scaled coordinate. Only the lines along the eigenvectors of the transfor
mation will preserve their steepest descent property in the new representation 
of the potential. For an illustration see, e.g., ref 11, p 99. 

(27) Mezey, P. G. Int. J. Quantum Chem. 1984, 26, 983. 
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Figure 1. The family of all internal configurations of a triatomic system 
ABC, that is, the ABC configuration space M, can be represented by a 
formal "quarter" of the 3D space. The origin corresponds to the united 
atom configuration, along plane D and lines D' and D" some nuclear 
pairs are coincident, whereas plane L contains all linear triatomic con
figurations. 

FB as the three selected coordinates and fix all remaining coor
dinates at zero 

* A = K A = K C = Z A = Z B = Z C = 0 (1) 

The family of all coordinate triplets (Xc, XB, YB) fullfiling either 
one of the two conditions (i) or (ii) 

(i) Xc > 0, F8 > 0, or (2) 

(ii) XB = 0,XC = 0, and FB > 0 (3) 

is a formal "quarter" of a three-dimensional (3D) space spanned 
by the three coordinates Xc, XB, and KB. This "quarter" represents 
the configuration space M of the stoichiometric family ABC of 
chemical species. Note that along boundary half-plane D nuclei 
A and C coincide, hence this plane actually represents a diatomic 
system. Each configuration of this half-plane is equivalent to a 
point on the KB axis, and only the origin and the positive KB axis 
of this plane is regarded as a part of M. All other linear con
figurations are found in the open half-plane L that is a part of 
M. Within L one finds the diatomic configurations with coincident 
nuclei A and B (along half-line D') and those with coincident 
nuclei B and C (along half-line D"). The united atom configu
ration is the origin of the X0, X6, and YB coordinate system shown, 
the only point of line V that belongs to M. 

The first classification we consider for nuclear arrangements 
is based on symmetry. Each nuclear configuration K can be 
characterized by its point symmetry group, g(K). We shall classify 
nuclear configurations into families, where within each family, 
the group is the same for all configurations. This is equivalent 
to considering subsets G, of the nuclear configuration space M, 
where within each subset all points K correspond to nuclear 
configurations having the same point symmetry group g„ g(K) 
= g,. Within the configuration space M, a given group g,- may 
occur in several, separate, disjoint regions of the space, that is, 
there may exist different subfamilies of configurations of the same 
point symmetry that are separated by configurations of some 
different point symmetry. In such cases G1 is disconnected, and 
we shall use a second index j to distinguish the separate subsets 
Gy (the so-called maximum connected components) of G1-. If there 
is only one such G1-, subset, that is, if G,- = Gv = Gn, then the index 
;' = 1 may be omitted. The collection of all sets Gy covers the 
entire configuration space M, and since they do not overlap, the 
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Figure 2. Symmetry domains of the nuclear configuration space M of 
the water stoichiometric family of chemical species, using the configu
ration space representation of Figure 1. 

point symmetry domains G1-,- generate a subdivision of M. 
An illustration of the point symmetry domain subdivision for 

the triatomic stoichiometric family H2O is shown in Figure 2. The 
representation of M is that given in Figure 1 for the general 
triatomic case, with the choice of the O = A, H = B, and H = 
C assignment for the nuclei. For the stoichiometric family H2O 
there are five possible point symmetry groups: 

So = C gi = C211, g2 = C 0 , g3 = D„h, and g4 = /f 

The distribution of subsets G/ corresponding to these point sym
metry groups is shown in Figure 2. The highest point symmetry 
group K, the spherical group, belongs to the united atom, rep
resented by the origin. Point symmetry Dmtt is found along line 
I within the half-plane L, and all other points of the (open) 
half-plane L have the lesser C 0 symmetry, the same symmetry 
found along the positive KB axis. Note that these latter two subsets 
G2ii and G22 of set G2 = G(C1,) are disjoint, that is, it is im
possible to change any C 0 configuration from family G2ii to 
another C 0 configuration in family G22, without encountering 
some intermediate configuration of some different symmetry. The 
origin is the only point of the line V (where the two half-planes 
D and L meet) that belongs to M, and there the point symmetry 
is different, K, hence the origin does separate the two parts of G2 
= G(C0) within M. All C20 configurations are found along the 
conical surface C = G1, which, of course, does not include the 
origin or any point of half-plane L of linear configurations. All 
other points of M have only trivial C, symmetry. 

Although it is much more difficult to visualize parts of mul
tidimensional functions and spaces, one may generate an analogous 
subdivision of a higher dimensional configuration space M of any 
polyatomic (N > 3) stoichiometric family,11 where within each 
symmetry domain GtJ of M the point symmetry group of all 
nuclear configurations is g;. The very purpose of the theorems 
and rules we shall present below is to make our intuitive under
standing less dependent on visualization attempts and to provide 
alternative tools for the search and analysis of molecular species 
along potential surfaces. 

If the number of nuclei is greater than three (N > 3), then most 
of the nuclear configurations have only trivial point symmetry, 
even in the case of a homonuclear stoichiometry, hence most of 
the points of M belong to the subset G0 of the trivial point group 
g0. However, even if all the nuclei are different, there are still 
various subsets G, of M where the point symmetry group g, is 
nontrivial, as it is in the case, for example, in planar or linear 
configurations. Hence symmetry and the results we shall discuss 
below have relevance for all stoichiometries. 

The second classification of nuclear arrangements is based on 
an energy criterion that leads to various, formal chemical identity 
labels one may assign to the configurations. For each specified 
electronic state the energy changes along the potential energy 
surface account for molecular stability, endothermicity, or exo-
thermicity of reactions as well as for conformational and reaction 
barriers, for all species and processes confined to the given potential 
surface. Each catchment region represents a formal chemical 
species, regarded as & family of nuclear configurations with the 
common property that a concerted, infinitely slow relaxation 
converts each nuclear configuration of the family into the same 
stationary configuration. Proper mass-weighting of coordinates 
is the condition for the energy gradient to represent internal forces, 
and for a steepest descent path to represent concerted relaxation 
of the nuclei, that simplifies both the definition of catchment 
regions and the description of symmetry conservation properties. 
If mass-weighted coordinates are used, then the definition of 
catchment regions by relaxation paths can be replaced by a 
definition given in terms of steepest descent paths: a chemical 
species is represented by a catchment region of the potential energy 
surface, where from each point of the catchment region the steepest 
descent path leads to a common stationary point of energy.9"11 

We may assign the stationary point as a "chemical identity label" 
to each point of a given catchment region. Some examples for 
actual catchment regions will be shown in the following sections 
of this report. 

Conformational rigidity and conformational softness are de
termined by the shape and extent of catchment regions, that are 
in turn determined by the curvature properties of the potential 
energy surface. If the stationary point K(O,/) is the rth minimum 
of the potential surface, then the corresponding (37V - 6)-di-
mensional catchment region C(O,/) represents the /th stable species 
of the given electronic state. If the stationary point is the/th simple 
saddle point, denoted by K(Ij), then the corresponding (3 N 
-7)-dimensional catchment region C(IJ) represents the y'th 
transition structure. For critical points (also called stationary 
points) K(X,£) of some higher critical point index X, X > 2, the 
corresponding (3N- 6 - X)-dimensional catchment regions C(X1Zc) 
represent formal, unstable "species" of little direct (but of some 
indirect) chemical significance, for example, single points of (0-
dimensional) energy maxima. The catchment regions may be 
different for each electronic state, since in general the shapes of 
potential energy surfaces vary with electronic excitation. For a 
given electronic state the catchment regions generate a subdivision 
of the nuclear configuration space M. Most of the fundamental 
properties of catchment regions are reviewed in.11 

Within the context of nuclear configuration space M the in
terrelations between symmetry and stability (chemical identity) 
of nuclear configurations can be studied by comparing the two 
subdivision schemes of space M: one in terms of the point sym
metry domains Gy and another based on catchment regions C(X,*). 
An important difference between the two subdivisions will be 
exploited: only the second subdivision is dependent on the overall 
electronic charge and on the electronic state. 

For sake of simplicity in deriving the proofs, we shall assume 
that the potential energy surfaces are everywhere differentiable 
within the configuration domains we consider, that is, the concept 
of energy gradient is meaningful at each configuration considered. 
Note, however, that all our results are easily generalized to the 
case where a steepest descent path terminates as a consequence 
of reaching a point of nondifferentiability, such as a branch-cut 
point of a conical intersection, by replacing the phrase "critical 
point" with the phrase "critical point or a point of 
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Figure 3. The symmetry of the pattern of forces acting on the nuclei as 
well as the point symmetry of configurations are preserved during an 
infinitely slow, vibrationless relaxation of distorted molecules. New 
symmetry elements may appear only at configurations where the net 
forces vanish, that is, at critical points of potential surfaces. At equi
librium all symmetry elements of configurations along the relaxation path 
are present. In the case of water, no new symmetry element appears at 
equilibrium; however, for carbon dioxide the symmetry increases at the 
linear equilibrium structure. 

nondifferentiability" in the statements and proofs of the theorems. 
In the following derivations we shall not refer to nondifferentia-
bilities, but one should keep in mind the above generalization. 
Alternatively, at each point of nondifferentiability one may apply 
an infinitesimal distortion of the potential energy surface that 
makes it differentiable; this is a technique that has been applied 
in a different context.11 Most of the essential topological properties 
of the surface are not affected by this distortion, and it allows 
one to apply these theorems in their original forms. 

The Catchment Region Point Symmetry Theorem 

The theorem discussed in this section is the simplest in a series 
of results concerning point symmetry properties within a family 
of nuclear configurations. It has been first stated28 in the following 
form: the critical point K(X,/) has all the symmetry elements 
of its catchment region C(X,/). An equivalent formulation has 
been given with respect to the hierarchy of point symmetry groups 
within a catchment region,29 and this is the approach we shall use 
for generalizations. 

It what follows below we shall present a somewhat stronger 
variant of the theorem, with use of tools that are also suitable for 
the proofs of the new *Verticar symmetry theorems interrelating 
various electronic states. 

First we shall make a simple observation, by using the two 
examples shown in Figure 3, representing the two possible cases 
of symmetry conservation. Consider two, nonequilibrium con
figurations of the H2O and CO2 molecules, obtained from the 
respective equilibrium configurations by bending, accompanied 
by a symmetric stretching or shortening of the bond pairs. Both 
distorted nuclear geometries belong to the point symmetry group 
C20- If the distortions are small enough, then within a semiclassical 
molecular model the formal, infinitely slow relaxations of both 
systems will lead to their respective equilibrium structures. While 
restoring the equilibrium configuration, all the forces are expected 
to act symmetrically, according to the symmetry elements of the 

(28) Page 367 in ref 11. 
(29) Mezey, P. G. Reaction Topology and Quantum Chemical Molecular 

Design on Potential Surfaces. In New Theoretical Concepts for Under
standing Organic Actions; Bertran, J., Csizmadia, I. G., Eds.; Kluwer Aca
demic: Dordrecht, 1989; p 55. 

C21, point symmetry. For example, the forces acting upon the two 
hydrogen nuclei stay confined to the plane of the water molecule, 
and they also maintain being the mirror images of one another 
with respect to the reflection plane perpendicular to the molecular 
plane and passing through the oxygen nucleus. Consequently, 
by analogy with distorted macroscopic objects, we expect that 
during a formal, infinitely slow relaxation of the nuclei all the 
symmetry elements will be preserved. For example, at no stage 
of the infinitely slow, vibrationless relaxation process will one OH 
bond become longer than the other. In the case of the H2O system 
no symmetry change occurs at all, and the equilibrium configu
ration also has the symmetry C21,. No symmetry change occurs 
for the CO2 system either until it reaches the linear equilibrium 
configuration, where the symmetry suddenly changes to D„h. A 
new symmetry element, for example, a C„ symmetry axis of the 
linear equilibrium configuration of CO2, may appear only when 
the relaxation process is completed, that is, when the net internal 
forces vanish. The above, rather evident conclusions can be 
summarized as follows: (i) The pattern of nonzero net forces 
acting upon the nuclei during a formal, infinitely slow relaxation 
must have all the symmetry elements of the actual, nonequilibrium 
nuclear configuration. Consequently, these forces cannot lower 
the symmetry of the configuration in the relaxation process, and 
neither can the negatives of these forces lower the symmetry in 
the reverse process; hence the point symmetry is preserved as long 
as the forces do not vanish during a configuration change, (ii) 
Since in a relaxation process, an equilibrium configuration can 
be approached arbitrarily close by a nonequilibrium configuration 
for which the symmetry is preserved, the equilibrium configuration 
must also have all the symmetry elements present during the 
relaxation, (iii) Zero net forces, however, can be regarded to have 
arbitrary directions, hence any conceivable symmetry; conse
quently, it is possible that the same equilibrium configuration is 
reachable by another relaxation process along which some different 
symmetry elements are preserved. Consequently, at an equilibrium 
configuration new symmetry elements may appear. 

Note that actual molecules never follow the above model, since 
a relaxation involves vibrational motion, molecules possess zero 
point energy, and molecular configurations never stay relaxed at 
a potential minimum with all net internal forces equal to zero. 
However, the above model is suitable for interrelating the point 
symmetries of various configurations, and the conclusions can be 
generalized for all molecules. 

The above, intuitively evident conclusions can be stated in a 
form more convenient for the purposes of configuration space 
analysis by recalling that an infinitely slow, vibrationless molecular 
relaxation can be represented by the steepest descent path of a 
potential surface. Pechukas25 has presented an elegant proof for 
the following, equivalent result: along each path of steepest descent 
of a potential surface, defined in terms of a mass-scaled coordinate 
system, all symmetry elements are preserved, and additional 
symmetry elements may appear only at critical points (endpoints) 
of the steepest descent path, that is, at points corresponding to 
configurations where the net internal forces vanish. Among such 
critical points one finds those of energy minima and saddle points 
of transition structures ("transition states"). The main result of 
Pechukas25 also implies that the transition structure symmetry 
elements have an important role interrelating product and reactant 
configurations, a result that can be extended to chiral configu
rations.30 

Catchment regions of potential energy surfaces are defined with 
respect to steepest descent paths; consequently, one expects that 
by combining the above property of steepest descent paths with 
properties of catchment regions, one may obtain significant re
sults.28,29 Consider a catchment region C(O,/) of a minimum point 
K(O,/), representing a stable chemical species. The minimum point 
K(O,/) is the only critical point within C(O,/), and from all other 
points K of C(O,/) the path of steepest descent must lead to K(O,/). 
Consequently, the configuration represented by the minimum point 
K(O,/) must have all the symmetry elements of all configurations 
represented by points K of the catchment region C(O,/). That 
is, the point symmetry group of the configuration at the minimum 
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point K(O,/) must contain the point symmetry groups of all other 
configurations of the catchment region C(O,/) as subgroups; in 
other words, K(O,/) has the highest point symmetry within its 
catchment region C(O,/). Precisely the same applies to all critical 
points K(X,/) of catchment regions C(X,/) of the potential surface, 
such as the simple saddle point K(I1/) of a catchment region 
C(I J), representing a transition structure. 

The above proof allows one to recast the original statement28 

of the catchment region point symmetry theorem as follows. 
Theorem 1. Within each catchment region C(X,/) the nuclear 

configuration corresponding to the critical point K(X,/) has the 
highest point symmetry. 

Note that the adjective "highest" needs some explanation, since 
in general it is not always possible to decide which one of a pair 
of point symmetry groups represents the "higher" point symmetry, 
for each group may contain elements not present in the other 
group. However, within a catchment region C(X,/) there always 
exists a point symmetry group (that of the critical point K(X,/)) 
which contains as subgroups all other groups occurring in C(X,/); 
hence within a catchment region it is meaningful to refer to the 
"highest" point symmetry. Also note that the theorem does not 
imply that the critical point K(X,/) is the only point within C(X,/) 
that has the highest point symmetry; some other and possibly all 
points of the catchment region C(X,/) may have the same (and 
by default, the highest) point symmetry. In this context one should 
recall that each point symmetry group is considered to be one of 
its own subgroups. 

Two aspects of the above theorem are of special interest: (i) 
The distribution of catchment regions and their critical points are 
the properties of the potential energy surface, that is, they depend 
on energy relations, whereas the point symmetries of various 
nuclear configurations are purely geometrical properties, not 
directly dependent on energy. Consequently, the theorem in
terrelates two very different molecular properties, (ii) The point 
symmetry of a fixed nuclear configuration is'independent of the 
net charge and the electronic state of the molecule. Consequently, 
the above result is general for the potential energy surfaces and 
catchment regions of all electronic states of the neutral and all 
ionic species of the given stoichiometry. The point group symmetry 
of nuclear configurations provides a condition that interrelates 
the catchment regions of different electronic states of neutral and 
ionic species. 

In Figure 4 the example of symmetry conservation along 
steepest descent paths within the configuration space of the H2O 
stoichiometric family is shown. The ground state equilibrium C20 
structure of the water molecule corresponds to the critical point 
K(O1I), that falls on the cone C of all C20 structures within M. 
Evidently, this critical point K(O1I) has the highest symmetry, 
C10, within the water catchment region C(O1I). Steepest descent 
paths pi, p2, and p3 stay within the cone C, and the C2,, point 
symmetry is preserved along them. Paths p4, p5, p6, and p7 ori
ginate from points of distorted water configurations of trivial 
symmetry C1. The C1 symmetry is preserved along these paths 
as long as the energy gradient does not become zero; however, 
the gradient converges to zero as the paths approach the critical 
point (minimum) K(O1I), where the symmetry suddenly increases 
to C21,. 

One generalization of the above theorem to pairs of symmetry 
and nuclear permutation operators28,29 is motivated by the pres
ervation of such operator pairs along steepest descent paths.25 For 
each symmetry operator R of a nuclear configuration K, there 
exists a permutation operator P, assigned to R by the following 
rule: the rearrangement of identical nuclei caused by the sym
metry operator R is undone by the permutation P of identical 
nuclei.25 Although the two operators, R and P1 are of different 
types, the net effect of applying R followed by P on the given 
nuclear configuration is equivalent to the effect of the identity 
operation I. Note, however, that for some other configurations 
the application of R followed by P may have an effect different 
from that of I. For two different configurations, K1 and K2 of 
the same set of nuclei, both having a given symmetry operator 
R, the assigned permutation operators P, and P2 may be different, 
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Figure 4. The configuration space model of Figure 2 is applied for water, 
showing various relaxation paths leading to the C20 equilibrium config
uration K(0,1). Paths pi, p2, and D3, originate at points of the cone C 
of configurations of C20 point symmetry, hence all these paths must stay 
confined to the cone, preserving C20 symmetry, while approaching the 
equilibrium point K(O1I). The origin points of paths p4l p5, p6, and p7 
have only trivial, C1 point symmetry, hence ail points along these paths, 
except their endpoint at K(O1I), must also have only trivial, C1 point 
symmetry. In particular, no relaxation path can cross the conical surface 
C. 

that is, R does not determine P in general. For each configuration 
K the pairs (R,P) of associated operators form a group, that is 
also preserved between critical points along steepest descent paths, 
defined in terms of mass-weighted coordinates.25 Consequenly, 
as it has been pointed out earlier,28,29 the catchment region point 
symmetry theorem can be generalized for groups having the (R,P) 
pairs as elements. In fact, all the proofs and general results we 
shall state in this contribution with reference to point symmetry 
operators and groups are equally valid for the pairs (R,P) of 
operators and their groups. 

The second generalization of the results allows one to nearly 
"double" the information gained. In all the theorems and general 
results discussed in this paper, the steepest descent paths can be 
replaced with steepest ascent paths, and all the new conclusions 
obtained are equally valid. In the context of the catchment region 
point symmetry theorem, this is equivalent to considering the 
formal catchment regions of the inverted potential energy surface, 
-E(K). Note that the two subdivisions of the configuration space 
M according to the catchment regions of E(K) and -E(K) are 
in general different and their interrelation is far from trivial. 
Consequently, the generalization does provide new information. 

A partial "converse" of the catchment region point symmetry 
theorem is also true for all electronic states of neutral and charged 
species of the given stoichiometric family. We shall refer to this 
result as the catchment region minimum theorem, stated as 
follows. 

Theorem 2. If within a catchment region C(X,/) there is a point 
K with a symmetry element R not present anywhere else in the 
catchment region, then this point K must have the lowest energy 
value within the catchment region, and point K is the critical point 
K(X,/) of C(X1/). 

The proof of this statement follows from the fact that each 
catchment region C(X1/) contains precisely one critical point. Since 
this critical point K(X1/) is the endpoint of all steepest descent paths 
originating anywhere within C(X1/), it must have the lowest energy 
within C(X1/). If a point K of the catchment region C(X1/) has 
a symmetry element R then, by the conservation of symmetry 
elements along steepest descent paths, this symmetry element must 
also be present at the critical point K(X1/). If this symmetry 
element R occurs only at point K of C(X,/), then K is identical 
with K(X,/); consequently, K must have the lowest energy within 
C(X1/). 
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Vertical Symmetry Theorems for a Sequence of Electronic 
States 

In studies of neutral and ionic molecular species of ground and 
various excited electronic states, excimers and exciplexes, and 
transition structures, one often faces the following question: how 
similar are these species to one another? In this section we shall 
derive a series of relations for the relative nuclear configurations 
of stationary points of various electronic states, by using the tools 
described above. For simplicity, we shall regard the net charge 
as being part of the specificiation of the electronic state, and it 
will be mentioned explicity only if emphasis is needed. 

Collectively these rules are referred to as vertical symmetry 
theorems. One may regard energy as a formal "vertical" dimension 
over a nuclear configuration space M. In general, electronic 
excitation affects the energy of a molecular system, hence relations 
among various electronically excited state potential surfaces may 
be regarded as formal vertical relations over M. 

We take a given collection of nuclei, that is, a given stoi-
chiometry, and consider the corresponding nuclear configuration 
space M that contains all possible nuclear arrangements. We 
choose any surface B that divides the nuclear configuration space 
M into two parts, M, and M2, as illustrated in Figure 5. We 
assume that the set M1 of configurations contains surface B as 
its boundary (that is, M1 is a so-called closed set). In the simplest 
case, any two points K, and K2 of B represent configurations that 
can be converted into one another continuously, without leaving 
set B, whereas any configuration represented by some interior point 
K3 in M) cannot be converted into any configuration represented 
by some point K4 in M2 without passing through boundary B. 

Some symmetry elements are present for all nuclear configu
rations K' along B, and we denote a family of such symmetry 
elements, R'„ R'2, ... R'p, by R' 

R' = |R'„ R'2, ... R'p) (4) 

We choose a nuclear configuration K from set M, and denote by 
R a family of symmetry elements, R1, R2,... R,, that are present 
at point K: 

R = (R11R2, ...RJ (5) 

Note that if one takes all common symmetry elements from B, 
then the family of symmetry operators corresponding to the family 
R' of symmetry elements is a group, and, evidently, if one extends 
family R to all symmetry elements of configuration K, then the 
corresponding symmetry operators form the point symmetry group 
of K. Our results, however, are valid even if one includes only 
some of the eligible symmetry elements in families R' and R. 

The vertical point symmetry theorem of nuclear configuration 
spaces states the following. 

Theorem 3. If (i) no configuration along B possesses the family 
R of symmetry elements or if (ii) configuration K does not have 
all the symmetry elements of family R', then the family M1 of 
configurations must contain at least one critical point for the 
potential energy surface of each electronic state {of each possible 
overall electronic charge). 

Note that if either one of conditions (i) and (ii) is fulfilled, then 
K must be an interior point of M1, that is, K cannot fall on the 
boundary B. 

In order to prove this theorem, we choose a potential energy 
surface corresponding to any one of the possible electronic states. 
There are two possibilities: if the chosen point K of set M1 is a 
critical point of this potential surface, then for this potential surface 
the statement of the theorem follows. If K is not a critical point, 
then there must exist a steepest descent path that passes through 
K. We show now that this steepest descent path cannot leave set 
M1. By assuming that the path does leave M1, we shall find a 
contradiction. If the path would leave set M1, then it would have 
to reach the boundary B at some point K'. This point K' could 
not be a critical point itself, since then the path would terminate 
there, hence it could not leave M1 (recall that M1 contains its 
boundary B). If the path would leave set M1, then this point K' 
could not be an ordinary, noncritical point either, since this would 
imply (by the conservation of symmetry elements along steepest 

descent paths) that configurations K and K' would have precisely 
the same symmetry elements. However, this is impossible, since 
it contradicts both of the conditions (i) and (ii) of the theorem. 
Consequently, there exists no point K' at the boundary B that can 
be reached by the steepest descent path from K, hence the path 
must terminate within set M1. Since each steepest descent path 
must terminate at a critical point, set M1 must contain at least 
one critical point of the potential energy surface of the chosen 
electronic state. Since the electronic state has been chosen ar
bitrarily, this conclusion is valid for each electronic state that 
proves the theorem. 

The theorem does not specify the exact location or type of the 
critical point; all it states is that if for some (arbitrarily small) 
part M1 of the configuration space M the condition of the theorem 
is fulfilled, then within M1 there must exist some critical point 
for each electronic state (and net charge). It does not specify the 
number of critical points, hence some critical points may remain 
undetected by the theorem. For different electronic states the 
critical points may have different locations within M1, and they 
may be of different types (e.g., minima or saddle points). Also 
note that the chosen test point K itself does not have to be a critical 
point for any one of the potential surfaces. 

An intriguing feature of this theorem is that it provides direct 
information on the behavior of the potential energy surface (the 
presence of a critical point within some region), based on a 
property of the configuration space M (symmetry conditions on 
boundary B and a test point K). Evidently, this information can 
be obtained without any quantum chemical calculation, simply 
by checking the symmetry elements for a family of configurations. 
This result shows that symmetry has a strong influence on energy 
in a rather general way. 

Since the conclusion is general for all electronic states, indicating 
the presence of a critical point within configuration domain M1 
for each potential surface, the theorem is suitable to study the 
similarities within a whole family of potential surfaces of all 
electronic states. 

By using a different set of conditions one may obtain a similar 
conclusion. We choose a symmetry element R of some interior 
point K of subset M1 and take the family SB of all symmetry 
elements of nuclear configurations occurring along boundary B. 
The vertical symmetry element theorem of nuclear configuration 
spaces states the following. 

Theorem 4. If M1 contains a configuration K that has a sym
metry element R not present in family SB, then the interior of 
M1 must contain at least one critical point for the potential energy 
surface of each electronic state {of each possible overall electronic 
charge). 

Note that if there exist two point symmetry groups along 
boundary B, neither of which is a subgroup of the other, then it 
is impossible to choose class R' of theorem 3 to coincide with class 
SB. Consequently, the conditions of theorems 3 and 4 are, indeed, 
different. Also note that theorem 3 can guarantee only the ex
istence of a critical point somewhere in set M1 that may fall on 
the boundary B, as this latter possibility is compatible with con
dition (ii) (but not with condition (i)). By contrast, theorem 4 
is somewhat stronger, since it implies that the critical point must 
fall within the interior of M1, that is, it cannot fall on the boundary 
B. 

In order to prove theorem 4, choose an electronic state and the 
corresponding potential energy surface. Furthermore, choose a 
point K of set M1 that has a symmetry element R not present in 
family SB. If K is a critical point, then for this potential surface 
the stateent of the theorem follows. If K is not a critical point, 
then there exists a steepest descent path passing through K. This 
path cannot reach the boundary B, since then it would have to 
have a common point with B, and then the family SB would contain 
all the symmetry elements of K, including R, in contradiction with 
the conditions of the theorem. Consequently, the steepest descent 
path must terminate within the interior of M1. Since each steepest 
descent path must terminate at a critical point, the interior of set 
M1 must contain at least one critical point of the potential energy 
surface of the selected electronic state. Since this conclusion is 
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valid for each electronic state, the statement of the theorem follows. 
A partial "reverse" of these theorems is also valid. If one knows 

that no critical point exists within a given domain (for some 
electronic state), then this information can be used to obtain global 
conclusions concerning symmetry within an entire subset M, of 
the configuration space M. 

Theorem 5. If the point symmetry group g, contains the col
lection of all the symmetry operators of symmetry elements oc
curring at various points of the boundary surface B and if exists 
an electronic state (of any net charge) with a potential surface 
that has no critical point within set M1, then no point K of set 
M i can have a point symmetry group g, g •£ g„ that contains g, 
as a subgroup. 

Stated differently, the lack of a critical point within M1 for any 
electronic state of any overall charge implies that no interior point 
of M| can have any symmetry element not present at the boundary 
B. 

The proof of theorem 5 follows from the fact that if M| contains 
no critical point for a potential surface, then for this surface the 
steepest descent paths from all points of M1 must leave M1 passing 
through B. Hence all symmetry elements present at various points 
of M1 must occur somewhere along the boundary B, and the 
statement of the theorem follows. 

One consequence of theorem 5 implies that some critical points 
cannot have higher symmetry than that of other points along a 
steepest descent path leading to the critical point. If the potential 
surface of one electronic state has a critical point within M1, then, 
in principle, this critical point can have new symmetry elements 
that are nowhere present along the boundary B. However, if there 
is another electronic state with a potential surface that has no 
critical point within M1, then the critical point of the first potential 
surface cannot have a new symmetry element either, in addition 
to those occurring along the boundary B. 

Symmetry Theorems on Relaxed Cross Sections of Potential 
Surfaces 

It is often inconvenient as well as unnecessary to analyze the 
domains of a multidimensional configuration space in its entirety. 
Some internal coordinates, such as C-H bonds in methyl groups, 
change only very little in many chemical processes, hence in those 
cases their changes do not have to be considered explicity. Instead 
of the full, (3N - 6)-dimensional problem, one may study lower 
dimensional, relaxed cross sections of the configuration space and 
of the potential energy surface. With this approach, only some 
of the internal coordinates are regarded as explicit variables, and 
all others are taken at their ("relaxed") optima that are dependent 
on the explicit variables. Techniques based on relaxed cross 
sections are often used in quantum chemical and other compu
tations. 

Our purpose is to adapt the catchment region point symmetry 
theorems and the vertical symmetry theorems to such relaxed cross 
sections. Since point symmetry is dependent on all of the internal 
coordinates, we need to define precisely the process of generating 
the cross sections and the relations of steepest descent paths within 
the cross section to the steepest descent paths within the full 
configuration space. In particular, the clear distinction between 
the relaxed cross section of a potential surface and the relaxed 
cross section of the nuclear configuration space is essential. 

Let us assume that a subset A of the configuration space M 
is provided with a local coordinate system. We assume that the 
first n's of the internal coordinates (n < 3JV - 6) are the chemically 
important variables, and these are to be called the active coor
dinates, whereas the remaining ones (n' = 3N - 6 - n) are regarded 
as the passive coordinates. We choose an electronic state and 
the corresponding potential energy surface. For each value (in 
practice, for a finite number of values) of the n active coordinates 
within set A, the energy is repeatedly reoptimized with respect 
to the n' passive coordinates. If the optimization of passive co
ordinates is carried out for all possible fixed values of the active 
coordinates and if all these optima are found within set A, then 
the collection of all the resulting optimum points generates an 
n-dimensional surface, a subset C of A, relaxed along the di

rections of the passive coordinates. This surface C is fully relaxed 
only if it is everywhere orthogonal to the passive coordinates, a 
condition that is fulfilled only in exceptional cases. In the more 
common cases, a second optimization along directions locally 
orthogonal to C leads to a new, fully relaxed n-dimensional surface 
C, characterized by its points having zero gradient components 
orthogonal to C. This set C is called an /!-dimensional relaxed 
cross section of A according to the given potential energy surface. 
The relaxed cross section C may be thought of as an n-dimensional 
surface within M, where at every point K of C the gradient vector 
is tangential to C, hence the "gradient flux" is zero across this 
n-dimensional surface C. If the potential energy surface is re
stricted to this set C, then it can be regarded as an energy function 
of the n active coordinates. This energy function is called an 
n-dimensional relaxed cross section of the original potential energy 
surface. 

Note that the relaxed cross section C depends on the choice 
of the electronic state, that is, on the potential surface. However, 
one may repeat the optimization procedure of the passive coor
dinates for each electronic state, by using the same values of the 
active coordinates. One obtains a series of cross sections C: one 
for the potential energy surface of each electronic state, which 
may differ only in the passive coordinates. By taking the first 
n (active) components of all coordinate vectors in C, for any one 
of the electronic states, one obtains the same set C of n-di
mensional vectors. Each cross section C, as a curved surface 
cutting across the configuration space M, does depend on the 
electronic state, that is, on the potential energy surface according 
to which it is "relaxed". By contrast, the projection C of each 
of these sets C onto the n-dimensional subspace of the active 
coordinates is the same, that is, C is independent of the electronic 
state. Consequently, it is meaningful to treat all the relaxed cross 
sections of potential energy surfaces of all electronic states col
lectively as functions of the same active coordinates. Hence, one 
may regard the relaxed cross sections of potential surfaces of all 
electronic states as being defined over the same set C" of n-di
mensional coordinate vectors. This allows direct comparisons of 
the relaxed cross sections of potential surfaces of different elec
tronic states (of any net charge), an interesting application of 
vertical symmetry theorems to relaxed cross sections. 

Note that an n-dimensional surface C, characterized by its 
points having zero gradient components orthogonal to C, does not 
require that the energy is minimized with respect to all of the 
passive coordinates. Just as a rope may relax along a mountain 
ridge, even if each of its points lies at a maximum along directions 
locally orthogonal to the rope, a relaxed cross section C may also 
be obtained by maximizing energy along some of the passive 
coordinates. 

For some of the following results we need to clarify four ad
ditional concepts. A cross section may be limited to a finite 
configurational domain, hence it may have a boundary. If, by 
contrast, we require that the cross section itself has no boundary, 
for example, if C" cuts across the entire configuration space, then 
C" is a complete relaxed cross section. No steepest descent path 
can leave a complete relaxed cross section. If the cross section 
is not complete, then it is possible for a steepest descent path to 
leave it at one of its boundary points along a direction locally 
tangential to the cross section. 

Another important concept is the interior point symmetry 
domain of a relaxed cross section C". If G",-, is one of the point 
symmetry domains of C" that has no points falling on the boundary 
of C", then G"tJ is an interior point symmetry domain of C". Since 
a complete relaxed cross section has no boundary, all its point 
symmetry domains are interior point symmetry domains. 

The third concept is the catchment region of a relaxed cross 
section C. A catchment region C(A,/) of any relaxed cross section 
C" is the collection of all the nuclear configurations of C" from 
where steepest descent paths stay within C" and lead to the critical 
point K(X,/). Note that along the passive coordinates, optimized 
individually for each electronic state, all gradient components 
vanish, hence a steepest descent path passing through any point 
K of the relaxed cross section C either stays within C or leaves 
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C at the boundary of C along a direction of tangential extension 
of C. In order to exist, for each catchment region C(A,/) of any 
relaxed cross section C" the corresponding critical point K(X,/) 
must also fall within C If K(X,/) is within C , then all points 
K of the common part of the catchment region C(X,/) of the full 
configuration space M and the relaxed cross section C", from where 
the entire steepest descent path segment between K and K(X,/) 
is contained within C", form a connected set. Hence it is 
meaningful to refer to a catchment region C(A,/) of a relaxed 
cross section C . 

The fourth concept is the interior catchment region of a relaxed 
cross section C If C(A,/) is one of the catchment regions of C" 
that has no points falling on the boundary of C", then C(A,/') is 
an interior catchment region of C . Since a complete relaxed cross 
section has no boundary, all its catchment regions are interior 
catchment regions. Note that, depending on the extent and 
boundary of a relaxed cross section C", it is possible that the 
common parts of some catchment region C(A,/) of M and the 
relaxed cross section C are disconnected, which implies that the 
common parts do not necessarily coincide with the corresponding 
catchment region C(A,/') of the relaxed cross section C". However, 
for a complete relaxed cross section C", C(A,/) is the common 
part of C(A,/) and C". 

The relaxed cross section versions of theorems 1-5, labeled as 
theorems 6-10, respectively, are obtained by replacing M, C(A,/'), 
M], M2, and B with their n-dimensional counterparts in the relaxed 
cross section, C", C(A,/), C 1 , C 2 , and B", respectively. Since 
steepest descent paths originating from any point K of C(A,/) 
must stay within C(A,/), all the steps of the proofs of theorems 
1-5 can be repeated. For completeness, these relaxed cross section 
theorems are stated explicitly in the supplementary material, as 
Theorems 6-10, together with an additional result, applicable only 
to relaxed cross sections. 

Examples and Applications 

Whereas properly mass-scaled coordinates are convenient for 
the derivation of the above results, their use in actual studies of 
molecular configurations is often impractical. Conventional in
ternal coordinates, such as bond angle and bond length coordinates, 
are more suitable for the recognition of chemically important 
conformational features. There is, however, some difficulty with 
such chemically motivated internal coordinate systems, since the 
transformation between them and the mass-scaled system is usually 
nontrivial, and even a simple linear transformation such as a 
nonuniform scaling of selected coordinates may transform a 
steepest descent path into a path that has no steepest descent 
property according to the gradient vectors defined in the new 
coordinate representation.26 This may appear as a serious limi
tation of conventional internal coordinates. Note, however, that 
nondegenerate coordinate transformations of local regions of the 
nuclear configuration space convert catchment region into 
catchment region and a closed boundary surface B into a closed 
boundary surface. Only our actual proofs require the use of 
steepest descent paths directly. For applications, it is sufficient 
to analyze the symmetry properties in catchment regions, along 
boundary surfaces and within their interiors, by using any coor
dinate system as long as it can be derived by a continuous and 
differentiable (nondegenerate) transformation from the mass-
scaled coordinates. Within local regions of the configuration space 
most of the usual internal coordinates satisfy this condition as 
guaranteed, for example, by the existence of a Riemannian space 
description of such local regions.15,16 

The examples of water and carbon dioxide, shown in Figure 
3, and the 3D representation for water in Figure 4 illustrate the 
catchment region point symmetry theorem: the energy minima 
have the highest point symmetry within the respective catchment 
regions. Note that linear H2O structures do not belong to the 
water catchment region; they belong to a transition structure 
catchment region involved in the planar inversion process of water. 

In Figure 5, a schematic 2D model is shown as an example for 
the vertical point symmetry theorem, indicating that the critical 
points of various excited electronic state potential surfaces do not 

Figure 5. The vertical point symmetry theorem applied to a model of a 
2D configuration space M. Boundary B divides the family M of all 
configurations into two subsets, M1 (containing B) and M2. If the point 
symmetries of configurations along B and at some interior point K of Mi 
are sufficiently different (see text), then family M1 must contain a critical 
point configuration for the potential energy surface of each electronic 
state. The critical points do not have to coincide with the test point K, 
and they may be of different types for the various excited-state potential 
surfaces. In the figure three potential surfaces, those of the ground state, 
E0(K), the first excited state E1(K), and the feth excited state E4(K), are 
shown, having a minimum, a 2D maximum, and a saddle point of a 
transition structure, respectively. 

Figure 6. The definition of C-O bond rotation angles for the confor
mational problem of the catechol molecule. 

have to be of the same type. In fact, they do not have to occur 
at the same configuration K either; however, all these critical points 
must belong to the family M, of configurations. 

The detailed example we shall consider is the 2D relaxed 
conformational cross section of catechol (1,2-dihydroxybenzene), 
involving the two C-O bond rotation angles 0i and 02 as active 
coordinates, defined in Figure 6. The ground-state potential 
energy surface for this cross section has been calculated by using 
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Figure 7. This figure shows a unit cell representation of the catechol 
conformational catchment regions for comparison with the symmetry 
domains and an illustration of the vertical point symmetry theorem. 
Letters m, s, and M stand for minimum, saddle point, and maximum, 
respectively. The faint solid lines are constant energy contours, calculated 
at the 3G ab initio level, and the crosshatched lines are the boundaries 
of 2D catchment regions of stable conformers. A catchment region is 
defined as the collection of all configurations from where a steepest 
descent path leads to a common critical point, in this instance, to a 
minimum point. Crosshatched line segments of the M-s-M or M-s-s 
pattern are 1D catchment regions, representing transition structures: 
from each point of the line segment a path of steepest descent leads to 
the saddle point near the middle of the line segment. The catchment 
region model provides a unique assignment of each internal configuration 
to a critical point, representing a stable or unstable, formal chemical 
species. The relaxed cross section version of the vertical point symmetry 
theorem applies to the boundary loop B that subdivides the conforma
tional space M into two subsets, denoted by boldface letters M, and M2, 
where M, contains the boundary B. Along the boundary none of the 
configurations have a reflection plane symmetry element, whereas M1 
contains an interior point, representing a configuration that has this 
symmetry element. The theorem implies that there must exist a critical 
point configuration within family M1 of configurations for the potential 
energy surface of each electronic state of the catechol system of any net 
charge. A property of potential energy surfaces, that is, information on 
energy, can be deduced by using no more than a simple test of symmetry. 

the GAUSSIAN 86 program and the standard STO 3G basis set.31 

The topological shape characteristics of the 3D "body" of the 
catechol molecule, as a function of conformational changes, are 
discussed elsewhere.32 

Due to the <t>\ = <t>\ + 360° and <t>2 = <t>2 + 360° equivalences 
for the bond rotation angles, the relaxed potential energy surface 
is periodic in both of the active coordinates. It is possible to 
represent all configurations of the cross section by a formal unit 
cell involving any 360° interval for each coordinate, as shown in 
Figure 7. However, for the actual conformational problem of the 
catechol molecule, it is not possible to choose a unit cell that would 
contain each conformational catchment region in a connected 
representation. For every choice, the boundary of the unit cell 
cuts into some of the catchment regions, hence an actual, connected 
catchment region may appear as two, disconnected pieces at 
opposite sides of the unit cell, and some catchment region may 

(30) Pages 91 and 93 in ref U. 
(31) Frisch, M. J.; Binkley, J. S.; Schlegel, H. B.; Raghavachari, K.; 

Melius, C. F.; Martin, R. L.; Stewart, J. J. P.; Bobrowicz, F. W.; Rohlfing, 
C. M.; Kahn, L. R.; Defrees, D. J.; Seeger, R.; Whiteside, R. A.; Fox, D. J.; 
Feuder, E. M.; Pople, J. A. GAUSSIAN 86; Carnegie-Mellon Quantum Chem
istry Publishing Unit; Pittsburgh, PA, 1986. 

(32) Arteca, G. A.; Heal, J. A.; Mezey, P. G. Theor. Chim. Acta 1990, 
76, 377. 

appear as four separate pieces at the four corners of the unit cell. 
In Figure 7 the letters m, s and M stand for minima, saddle 

points of transition structures, and maxima, respectively, whereas 
the faint solid contour lines represent constant energy values. The 
first contour around minimum m, corresponds to E = -375.573 
hartrees, and each subsequent line corresponds to an increment 
of 0.003 hartree, leading to the highest energy contour of E = 
-375.555 hartrees around maximum M3. The domains enclosed 
by crosshatched lines are the catchment regions C(Oj) of the three 
minima m„ ;' = 1, 2, 3. These catchment regions represent the 
stable conformers of the catechol molecule (see also comments 
below). Crosshatched line segments of the M-s-M pattern are 
catchment regions C(I1/') of transition structures. Note an unusual 
feature: the catchment regions C(I1I) and C( 1,2) of saddle points 
Sj and S2 are the crosshatched line segments MpS1-S3, and 
M2-S2-S3, respectively, involving steepest descent paths leading 
from one saddle point, S3, directly to other saddle points, st and 
S2. Within the 2D relaxed cross section the maximum points are 
their own catchment regions. Two-dimensional catchment regions 
C(0,1) and C(0,2) of minima In1 and m2 are cut in halves by the 
boundaries of the unit cell, whereas the catchment region C(0,3) 
of minimum m3 appears in four pieces, one at each corner of the 
unit cell. Most one-dimensional catchment regions C( I j ) of 
transition structures are cut in halves by the cell boundaries, with 
the exceptions of those of saddle points S1, S2, and S3. 

In the actual molecule the ring substituents in positions 3-6 
are all hydrogens, implying that the two OH groups are in 
equivalent environments. Consequently, the following pairs of 
critical points as well as their catchment regions are equivalent: 
minima In1 and m2, maxima M1 and M2, maxima M3 and M4, 
and saddle points S1 and S2. Furthermore, all four saddle points, 
S4, S5, s6, and S7, as well as their catchment regions are equivalent. 
However, if any one of the ring hydrogens is replaced by some 
other substituent, then the above equivalences are lost, and all 
critical points of different indices become nonequivalent. Some 
of the essential topological features of the relaxed potential surface 
may remain unaffected by a substitution (especially for substi
tutions in ring positions 4 and 5), and the actual numbering of 
critical points has been adopted in order to cover these cases. 

The point symmetry domains of the relaxed cross section are 
also shown in Figure 7. Most configuations have only trivial point 
symmetry, C1. Along the solid straight line of the NW-SE 
(Northwest-Southeast) diagonal of the given representation of 
the unit cell, all configurations have a reflection plane symmetry 
element, accordingly, the point symmetry is at least C1. These 
configurations can bederived from the reference configuration 
of 4>i = 0 and <f>2 = 0 by simultaneous disrotatory motions of the 
OH groups. Two isolated configurations of C1 symmetry are also 
found at the two energy minima, m, and m2, each represented 
twice in the figure, at opposite sides of the unit cell. In both of 
these two planar configurations only one of the OH bonds points 
toward the other, and any small change in the angles ^1 and ^2 

does lead to a loss of the plane of symmetry. 
All configurations with C2 point symmetry are found along the 

NE-SW diagonal; these configurations can be derived from the 
reference configuration of ^1 = 0 and <j>2 = 0 by simultaneous 
conrotatory motions of the OH groups. The C2 symmetry axis 
passes through the midpoints of the C(l)-C(2) and C(4)-C(5) 
bonds. 

There are only two isolated points, saddle point s3 and minimum 
m3, where both the reflection plane and the C2 symmetry axis are 
present; at these configurations the point symmetry is C211. Saddle 
point S3 falls within the interior of the chosen unit cell; conse
quently, it is represented by a single point of the figure. However, 
minimum point m3 appears four times in the figure, as it happens 
to fall on the corners of the chosen unit cell. In fact, both isolated 
configurations of point symmetry C21, may be regarded as points 
occurring at the intersections of the C1 (NW-SE) diagonal and 
the C2 (NE-SW) diagonal. One should note that the C1 and C2 

symmetry sets represented by these two different diagonal lines 
do intersect at two different points, a feat that cannot be accom
plished by ordinary straight lines in Euclidean geometry, indicating 
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that their straight line representations within a single unit cell 
do not convey all the relevant information. 

There is a useful, alternative representation of the unit cell that 
avoids multiple occurrences of individual configurations. This 
representation is identical with that obtained in a standard to
pological transformation of periodic functions33 that has been used 
extensively in various conformational potential surface studies and 
reviewed, for example, in ref 11. By identifying two opposite 
boundary lines of the unit cell, representing the same family of 
configurations, the potential map can be rolled up, forming a 
cylinder. The two end circles of this cylinder also represent a 
common family of configurations, and, by identifying these circles, 
the two ends of the cylinder are joined, forming a torus as shown 
in Figure 8. On this torus each nuclear configuration of the relaxed 
cross section is represented by precisely one point, and, at the same 
time, all the catchment regions appear as connected sets. By 
contrast to the conventional unit cell representation shown in 
Figure 7, where two distant points may represent very similar or 
even identical configurations, on the torus two points that are far 
apart always represent two very different configurations. Hence 
the conformational torus reflects better the interrelations among 
configurations. However, one disadvantage of the graphical 
representations of the conformational torus is that some of its parts 
are hidden from view. It is often useful to carry out parallel studies 
of the geometrical features on conventional unit cells and the 
general topological properties on conformational tori, keeping the 
dual representation in perspective. 

As it is evident from Figure 7, the catchment region point 
symmetry theorem applies to each catchment region of the catechol 
relaxed cross section. For example, point symmetry C2v is the 
highest one occurring within catchment region C(0,3), found at 
the minimum point m3 = K(0,3). There exists only one such point 
of the highest symmetry within C(0,3). 

The assertion of the relaxed cross-section catchment region 
minimum theorem (theorem 7) is found valid in the example, since 
the unique point of C21, symmetry is indeed the lowest energy point 
of catchment region C(0,3). 

The vertical point symmetry theorem (theorem 8) is illustrated 
by the conventional unit cell representation (Figure 7) and by a 
conformational torus representation (Figure 8) of the catechol 
relaxed cross section. In the notations used in the figures the 
indication of dimension 2 is omitted. Note that the Cs and C2 
symmetry sets appear as circles on the conformational torus. The 
relaxed conformational space, denoted by M in Figures 7 and 8, 
is divided into two subsets, labeled with boldface symbols M1 and 
M2, by a boundary line B that is contained in M1. Note that due 
to the limitations of the conventional unit cell representation, in 
Figure 7, the boundary line B appears disconnected; however, in 
the conformational torus representation (Figure 8), the boundary 
B is properly shown to be connected. Along the boundary B all 
configurations have only trivial C1 point symmetry. Within the 
family M1 of configurations there exists a configuration of point 
symmetry C1, that is, one with a symmetry element (reflection 
plane) that does not occur along B. Consequently, condition (i) 
of the theorem is fulfilled, and the theorem applies: in family M) 
there must exist a critical point configuration for the relaxed cross 
section of the potential surface of each electronic state. 

The very same choice of families M1 and M2 of configurations 
and boundary line B also serves as an example for the vertical 
symmetry element theorem, adapted to relaxed cross sections 
(theorem 9). The symmetry element of reflection plane, present 
at point m3, is not a member of the family SB of symmetry ele
ments occurring along B (in this example, SB contains only the 
trivial symmetry element, corresponding to the identity symmetry 
operation I). Consequently, the theorem applies, indicating the 
existence of a critical point in the interior of M1. 

One may choose the families M1 and M2 of configurations and 
boundary line B in infinitely many different ways, some of which 
may lead to identical conclusions. Whereas in the above choice 

(33) Singer, I. M.; Thorpe, J. A. Lecture Notes on Elementary Topology 
and Geometry; Springer-Verlag: New York, 1976; p 64. 

there is no variation of point symmetry along B, in the following 
choice the symmetry varies along B. This problem is the easiest 
to visualize on the conformational torus of Figure 8. One may 
take B as any loop falling on or in between the first and second 
energy contours around point m3; for example, one may take B 
as the first energy contour. From the resulting two subsets of the 
torus take family M1 as the one that contains m3. Along B, most 
configurations have only the trivial symmetry C1; however, B must 
cross the circle of configurations of Cs symmetry as well as the 
circle of configurations of C2 symmetry, both on at least two 
occasions and possibly a greater even number of times. Hence 
some configurations with a reflection plane and some configu
rations with a C2 symmetry axis do occur along B. There exists 
a configuration within M1 that has C2n symmetry, and there is 
no configuration along B that has all the symmetry elements 
corresponding to the C20 point symmetry group. Consequently, 
the vertical point symmetry theorem applies, and there must exist 
a critical point in family M1 for the relaxed cross section of the 
potential surface of each electronic state. This critical point is 
m3 that happens to be a minimum point of the ground electronic 
state relaxed potential surface. 

Of course, the theorems are not restricted to energy minima. 
In order to illustrate this fact, consider, for example, the repre
sentation in Figure 7 and a circle drawn around saddle point s3 
by any positive radius of less than 180° (note that both coordinates 
of the unit cell are angles, hence distances on the conformational 
map, such as a radius, can be measured in degrees). We take 
this circle as the boundary B and take family M, as the disk 
defined by the circle. The point symmetry groups occurring along 
B are C1, C2, and Cs. There exists a configuration within the disk 
M1 where the point symmetry group is C20, and the full set of 
symmetry elements corresponding to group C2x does not occur 
anywhere along B. Hence the vertical point symmetry theorem 
implies that within the disk M1 there must exist at least one critical 
point for every electronic state. If the radius of the circle is large 
enough, then several actual critical points of the ground-state 
relaxed potential surface fall within M1. However, for smaller 
radii, e.g., for 30°, there is only one critical point of the 
ground-state surface, the saddle point s3. In this case the theorem 
leads to the detection of a critical point that happens to be a saddle 
point of a transition structure. 

In all of the above examples the critical point coincides with 
the test point K of set M1; however, this is not required in general. 
There may exist a whole family of interior points K of the same 
symmetry properties, and the critical point can be different from 
the actual test poin K. A coincidence is common in two dimen
sions, if there exists some variety of point symmetries within the 
cross section. These are the very 2D problems that serve best as 
illustrative examples in planar drawings. However, even in two 
dimensions, the point symmetry theorem may determine only a 
subset within which at least one critical point must occur for each 
electronic state. For different electronic states their location (as 
well as type, e.g., minimum, saddle point) may be different. 

One such example can be found in Figure 7 if one takes a 
different choice for subsets M1 and M2. Take two parallel lines, 
10° apart on both sides of the C2 diagonal (NE-SW) in Figure 
7, and their extensions which (by periodicity) are lines near the 
NW and SE corners, cutting off these corners from the rest of 
the unit cell. (Note that the "extended" lines appear as two 
distorted circles on the conformational torus of Figure 8 with the 
circle C2 sandwiched between them.) This pair of lines separates 
the relaxed conformational unit cell into two subsets, M1 and M2. 
We take M1 as the subset that contains the NE-SW diagonal and 
take the pair of lines as its boundary B. In this case the boundary 
B has two parts (two maximum connected components), a fact 
that can be demonstrated easily on the conformational torus of 
Figure 8. Take point K as any point along the NE-SW diagonal; 
this point has at least C2 symmetry. Since along B only C1 and 
C1 point symmetries occur, the relaxed cross section vertical point 
symmetry theorem (theorem 8) applies, indicating that M1 must 
contain at least one critical point. The precise location of this 
critical point is not determined by the theorem, although by 
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Figure 8. This figure shows illustration of point symmetry domains and 
the relaxed cross section vertical point symmetry theorem of the catechol 
conformational problem on a conformational torus. Note that the unit 
cell representation of Figure 7 does not reflect properly the connectedness 
of the boundary loop B, and, in general, very similar or even identical 
configurations may appear as distant points of the unit cell. The con
formational torus avoids these difficulties and provides a faithful topo
logical representation of the conformational problem. 

reducing the distance of 10° between the two lines, the size of 
set M|, hence the uncertainty in the location (as predicted by the 
theorem), can be reduced. Eventually, the critical point "caught" 
by the theorem can be confined to the NE-SW diagonal. How
ever, if one takes a whole family of potential surfaces, then along 
this diagonal line some of the critical points may appear at dif
ferent locations for each potential surface, depending on the net 
charge and the electronic state. 

In three or higher dimensions the coincidence of the test point 
K and the critical point is no longer the most common case. For 
an illustration of this feature for the case of a simple 3D problem, 
one may consider a "breathing" motion of the catechol molecule, 
in addition to the C-O bond rotations. In order to be able to use 
a simple, visualizible extension of the 2D problem described above, 
we choose the breathing motion as a uniform scaling of all of the 
conformations of the molecule, affecting all internuclear distances 
by a common multiplying factor / We take this factor/( /"> O) 
as the third active coordinate, in addition to the rotation angles 
0i and 02 . (In the strict sense, t h e / = 0 case of the united atom 
should also by included; however, the energy barrier of a nuclear 
reaction leading to this point is much too high, and it is safe to 
assume that no steepest descent path would lead there.) The new, 
3D relaxed cross section may be imagined by taking coordinate 
/ a l o n g a direction perpendicular to the plane of Figure 7. We 
take the new 2D boundary B as a tube, generated by translating 
the loop B shown in the figure parallel to the new coordinate axis 
/ Family M, of configurations are all those enclosed by and falling 
on the tube, whereas family M2 contains all other configurations 
of the 3D relaxed cross section. Along tube B all configurations 

have only trivial C1 point symmetry; however, tube B encloses a 
line along which all configurations have Cs point symmetry. If 
one chooses the test point K as any point along this line, then the 
relaxed cross section vertical point symmetry theorem (theorem 
8) applies: there must exist a critical point within family M, of 
configurations for the 3D relaxed cross section of the potential 
energy hypersurface of each electronic state (of any net charge) 
of the catechol system. For most choices of coordinate/, the test 
point K and the critical point (m2 in Figure 7) are different. 

Summary 

In this report we describe a new, global approach to the analysis 
of the relations between point symmetry of nuclear arrangements 
and energetic stability of chemical species. The approach leads 
to the recognition of several new symmetry theorems which provide 
surprisingly strong symmetry conditions on the shapes of ground 
and excited electronic state potential energy surfaces for both 
neutral and ionic systems. The catchment region point symmetry 
theorem and various "vertical" symmetry theorems may serve as 
predictive tools in the search for both neutral and ionic stable 
molecular species and transition structures on ground- and ex
cited-state potential energy surfaces. The vertical symmetry 
theorems use only point symmetry information along the boundary 
B of a configuration family M, and at one interior test point K 
of M| . Just as an "over the horizon radar", these theorems are 
suitable for the "remote detection" of a critical point, a feature 
important in the topological analysis of potential surfaces and, 
in general, in the topological approach to molecular species and 
chemical reactions.34 The above theorems can serve as tools for 
detecting as well as locating some of the critical points. The mere 
presence of an interior point K of symmetry properties sufficiently 
different from those at the boundary B of a multidimensional 
domain M, leads to the detection, although not necessarily to the 
exact location of a critical point. However, by gradually decreasing 
the size of set M, by contracting its boundary B and by testing 
the conditions of the theorems, one may reduce the uncertainty 
in the location, and in some cases one may find the exact location 
of the critical point. The theorems are also adapted to lower 
dimensional, relaxed cross sections of multidimensional potential 
surfaces, important in actual potential surface computations. Their 
applications are illustrated by various examples. 
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